

MPPT Solar Charge Controller

User Manual

Models:

TRIRON1206N/TRIRON1210N
TRIRON2206N/TRIRON2210N
TRIRON3210N/TRIRON3215N
TRIRON4210N/TRIRON4215N

Important Safety Instructions

Please save this manual for future review.

This manual contains safety, installation and operation for Maximum Power Point Tracking (MPPT)

TRIRON series controller ("the controller" as referred to in this manual).

General Safety Information

- Read carefully all the instructions and warnings in the manual before installation.
- No user serviceable components inside the controller. DO NOT disassemble or attempt to repair the controller.
- Mount the controller indoors. Prevent exposure to the elements and do not allow water to enter the controller.
- Install the controller in a well ventilated -place. The controller's heat sink may become very hot during operation.
- It is suggested to install appropriate external fuses/breakers.
- Make sure to switch off all PV array connections and the battery fuse/breakers before controller installation and adjustment.
- Power connections must remain tight to avoid excessive heating from loose connection.

CONTENTS

1 General Information	1
1.1 Overview	1
1.2 Characteristics	2
1.3 Module Types	3
1.4 Naming rules	6
2 Installation	7
2.1 Attentions	7
2.2 PV Array Requirements	7
2.3 Wire Size	11
2.4 Mounting	12
3 Modules installation	15
4 Module Introduction	17
4.1 Display Module	17
4.1.1 Display Basic1 (DB1)	17
4.1.2 Display Standard1 (DS1)	18
4.1.3 Display Standard 2 (DS2)	22
4.2 Interface Modules	27
4.2.1 Interface type	27
4.2.2 Double USB (USB1)	27
4.2.3 USB COM Slave (UCS)	27
4.2.4 Relay COM Master (RCM connect the our company of inverter only)	28
4.2.5 Relay COM Slave (RCS connect the accessories)	29
5 Parameters Setting	30
5.1 Battery parameters setting	30
5.1.1 Supported battery types	30

5.1.2 Local setting	30
5.1.3 Remote Setting	33
5.2 Load working modes	. 36
5.2.1 LCD setting	36
5.2.2 RS485 communication setting	37
Others	39
S.1 Protection	. 39
5.2 Troubleshooting	. 40
6.3 Maintenance	. 43
Technical Specifications	44
nnex I Conversion Efficiency Curves	47
	5.1.3 Remote Setting 5.2 Load working modes 5.2.1 LCD setting 5.2.2 RS485 communication setting Others 6.1 Protection 6.2 Troubleshooting 6.3 Maintenance Fechnical Specifications

1 General Information

1.1 Overview

The TRIRON series controllers are modular-designed products based on six MPPT solar controller models. The main unit(Power Module)(TRIRON****N) is a solar controller which can be integrated with different display and interface modules to meet a variety of functional requirements. The TRIRON series controllers can automatically identify and load the drivers of various modules. There are three display modules (Basic 1(DB1), Standard1(DS1) and Stardard2(DS2)) and four interface modules (USB COM Slave(UCS), Relay COM Slave(RCS), Relay COM Master(RCM) and Dual USB1(USB1)). Users can choose any combination of these modules according to their needs.

With the advanced MPPT control algorithm, TRIRON series controllers can minimize the maximum power point loss rate and loss time, quickly track the maximum power point of the PV array and obtain the maximum energy from solar modules under any conditions; and can increase the ratio of energy utilization in the solar system by 20%-30% compared with a PWM charging method. With the adaptive three-stage charging mode based on a digital control circuit, TRIRON series controllers can effectively prolong the lifecycle of batteries, significantly improve the system performance and support all-around electronic protection functions, including overcharging and over-discharging protection to minimize damages to components of the system caused by incorrect installation or system failure at the utmost, and effectively ensure safer and more reliable operation of the solar power supply system for a longer service time. This modular solar controller can be widely used for different applications, e.g., communication base stations, household systems, street lighting systems and field monitoring, etc.

Features:

- Identify and load the drivers of various modules automatically
- Modular design for easy combination and replacement
- · Advanced MPPT control algorithm to minimize the MPP loss rate and loss time
- Advanced MPPT technology, with efficiency no less than 99.5%.
- Maximum DC/DC conversion efficiency of 98%
- Ultra-fast tracking speed and guaranteed tracking efficiency.
- Automatic limitation of the charging power and current
- · Wide MPP operating voltage range.
- Multiple load work modes
- Support the lead-acid and lithium batteries: voltage parameters can be set on the controller[®]

- Programmable temperature compensation
- · Real-time energy statistics function.
- · Overheating power reduction function
- · LCD and indicators to display operating data and status of the system
- User-friendly buttons for comfortable and convenient operation
- Master and slave RS485 communication modules design, reading the load or inverter operating data
- · Control the inverter switch through the relay interface
- Provide 5VDC power through the dual USB output interface to charge electronic devices
 For the BCV, FCV, LVD, and LVR, users can modify them on the local controller when the battery type is "USE."

1.2 Characteristics

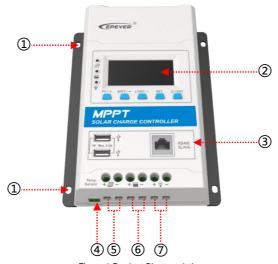


Figure 1 Product Characteristics

1	Mounting Hole Φ5mm	(5)	PV Terminals
2	Display Module	6	Battery Terminals
3	Interface Module		
4	RTS* Interface	•	Load Terminals

If the temperature sensor is short-circuited or damaged, the controller will charge
 or discharge at the default temperature setting of 25 °C.

1.3 Module Types

> 1-Power Modules

The Power Modules control PV battery charging & load discharging without any without any display or interface modules installed –they can operate on their own. If a display or interface module is installed, it will be powered by the Power module and the appropriate module driver will be loaded.

NOTE: The power module can be operated independently without any other modules.

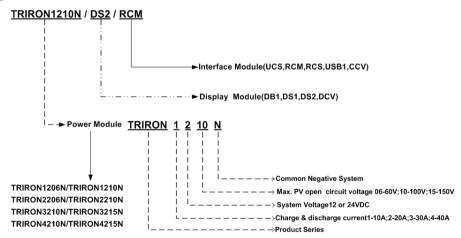
Model	System voltage	Max. PV open circuit voltage	Rated charge/discharge current	Picture
TRIRON1206N	12/24VDC	60V	10A	CEPEVED"
TRIRON2206N	12/24VDC	60V	20A	
TRIRON1210N	12/24VDC	100V	10A	
TRIRON2210N	12/24VDC	100V	20A	
TRIRON3210N	12/24VDC	100V	30A	·
TRIRON4210N	12/24VDC	100V	40A	
TRIRON3215N	12/24VDC	150V	30A	- 0.0 0.0 0.0
TRIRON4215N	12/24VDC	150V	40A	

2-Display Modules

Module)	Description	Picture
Display Basic1	DB1	LED Indicators: PV & battery working status Button: When the working mode is Manual Control, the load is ON/OFF via the button.	Company Compan

Display Standard 1	DS1	LED Indicators: PV & load working status Buttons: View or set the parameters LCD: PV display: voltage/current /generated energy Battery display: voltage/current/temperature Load: Display current/load working mode when the controller communicates with the PC or APP. Display voltage/current/ power consumption when the controller communicates with the inverter.	W GELECT CANTER
Display Standard 2	DS2	Indicators: PV & battery & load working status Buttons: View or set the parameters LCD: PV display voltage/current /generated energy/Power Battery display voltage/ current/temperature/capacity Load: Display voltage/ current/ power/ load working mode when the controller communicates with the PC or APP. Display voltage/current/power power consumption when the controller communicates with the inverter.	Para Series 1000-a Series 0-1000
No Display Cover	DCV	No indicator or display	

> Interface Modules


Module		Function	Picture
USB COM Slave	ucs	RS485 interface: Connect to PC or phone. View or change the controller parameters. USB interface: Supplies 5VDC for electronic equipment. NOTE: USB interface is output when the load is ON.	PS-485 SLAVE
Relay COM Master	RCM	RS485 interface: Connect to inverter. View the inverter parameters via the LCD. Relay interface: Remotely control the inverter ON/OFF. NOTE: The module can't connect the accessories.	Ruley R5485 Accessory: 3.81-2P terminal
Relay COM Slave	RCS	RS485 interface: Connect to PC or phone. View or change the controller parameters. Relay interface: Remotely control the inverter ON/OFF. NOTE: The module can connect the accessories.	Accessory: 3.81-2P terminal
Double USB	USB1	USB interface: Supplies 5VDC for electronic equipment. NOTE: USB interface is output when the load is ON.	₩ 6V Мак. 2.3%

No COM Cover	CCV	No interface	
-----------------	-----	--------------	--

The controller must be powered off for 1 minute when user replace the display modules or interface modules.

1.4 Naming rules

2 Installation

2.1 Attentions

- Please read the entire installation instructions to get familiar with the installation steps before installation.
- Be very careful when installing the batteries, especially flooded lead-acid battery. Please wear eye protection, and have fresh water available to wash and clean any contact with battery acid.
- · Keep the battery away from any metal objects, which may cause short circuit of the battery.
- Explosive battery gases may come out from the battery during charging, so make sure ventilation condition is good.
- Ventilation is highly recommended if mounted in an enclosure. Never install the controller in a sealed enclosure with flooded batteries! Battery fumes from vented batteries will corrode and destroy the controller circuits.
- Loose power connections and corroded wires may result in high heat that can melt wire
 insulation, burn surrounding materials, or even cause fire. Ensure tight connections and use
 cable clamps to secure cables and prevent them from swaying in mobile applications.
- Lead-acid battery and lithium battery are recommended, other kinds please refer to the battery manufacturer.
- Battery connection may be wired to one battery or a bank of batteries. The following instructions
 refer to a singular battery, but it is implied that the battery connection can be made to either one
 battery or a group of batteries in a battery bank.
- Multiple same models of controllers can be installed in parallel on the same battery bank to achieve higher charging current. Each controller must have its own solar module(s).
- Select the system cables according to 5A/mm² or less current density in accordance with Article 690 of the National Electrical Code, NFPA 70.

2.2 PV Array Requirements

(1) Serial connection (string) of PV modules

As the core component of PV system, controller could be suitable for various types of PV modules and maximize converting solar energy into electrical energy. According to the open circuit voltage (V_{∞}) and the maximum power point voltage (V_{Mpp}) of the MPPT controller, the series number of different types PV modules can be calculated. The below table is for reference only.

TRIRON1206N/2206N:

System	Voc<23V		48 cell Voc <31V		54 cell Voc<34V		60 cell Voc<38V	
voltage	Max.	Best	Max.	Best	Max.	Best	Max.	Best
12V	2	2	1	1	1	1	1	1
24V	2	2	_	-	-	_	_	-

System	72 cell V	ell Voc<46V 96 cell Voc<62V			Thin-Film Module	
voltage	Max.	Best	Max.	Best	Voc>80V	
12V	1	1	-	-	-	
24V	1	1	-	-	-	

NOTE: The above parameter values are calculated under standard test conditions (STC (Standard Test Condition): Irradiance 1000W/m², Module Temperature 25°C, Air Mass1.5.)

TRIRON1210N/2210N/3210N/4210N:

System	36 cell Voc<23V		48 cell Voc<31V		54 cell Voc<34V		60 cell Voc<38V	
voltage	Max.	Best	Max.	Best	Max.	Best	Max.	Best
12V	4	2	2	1	2	1	2	1
24V	4	3	2	2	2	2	2	2

System	72 cell Voc<46V		96 cell	Voc<62V	Thin-Film Module
voltage	Max.	Best	Max.	Best	Voc>80V
12V	2	1	1	1	1
24V	2	1	1	1	1

NOTE: The above parameter values are calculated under standard test conditions (STC (Standard Test Condition): Irradiance 1000W/m², Module Temperature 25°C, Air Mass1.5.)

TRIRON3215/4215N:

System	360 Voc<	cell <23V	480 Voc<	cell <31V		cell <34V		cell <38V
voltage	Max.	Best	Max.	Best	Max.	Best	Max.	Best
12V	4	2	2	1	2	1	2	1
24V	6	3	4	2	4	2	3	2

System	72cell Voc<46V		96cell Voc<62V		Thin-Film Module
voltage	Max.	Best	Max.	Best	Voc>80V
12V	2	1	1	1	1
24V	3	2	2	1	1

NOTE: The above parameter values are calculated under standard test conditions (STC (Standard Test Condition): Irradiance 1000W/m², Module Temperature 25°C, Air Mass1.5.)

(2) Maximum PV array power

The MPPT controller has the function of current/power-limiting, that is, during the charging process, when the charging current or power exceeds the rated charging current or power, the controller will automatically limit the charging current or power to the rated charging current or power, which can effectively protect the charging parts of controller, and prevent damages to the controller due to the connection of some over-specification PV modules. The actual operation of PV array is as follows:

Condition 1:

Actual charging power of PV array ≤ Rated charging power of controller

Condition 2:

Actual charging current of PV array ≤ Rated charging current of controller

When the controller operates under "Condition 1" or "Condition 2", it will carry out the charging as per the actual current or power; at this time, the controller can work at the maximum power point of PV array.

WARNING

When the power of PV module is greater than the rated charging power, and the maximum open-circuit voltage of PV array is more than 60V(TRIRON**06N)/100V(TRIRON**10N)/150V(TRIRON**15N) (at the lowest environmental temperature), the controller may be damaged.

Condition 3:

Actual charging power of PV array>Rated charging power of controller

Condition 4:

Actual charging current of PV array>Rated charging current of controller

When the controller operates under "Condition 3" or "Condition 4", it will carry out the charging as per the rated current or power.

WARNING

When the power of PV module is greater than the rated charging power, and the maximum open-circuit voltage of PV array is more than

60V(TRIRON**06N)/100V(TRIRON**10N)/150V(TRIRON**15N) (at the lowest environmental temperature), the controller may be damaged.

According to "Peak Sun Hours diagram", if the power of PV array exceeds the rated charging power of controller, then the charging time as per the rated power will be prolonged, so that more energy can be obtained for charging the battery. However, in the practical application, the maximum power of PV array shall not be greater than 1.5 x the rated charging power of controller. If the maximum power of PV array exceeds the rated charging power of controller too much, it will not only cause the waste of PV modules, but also increase the open-circuit voltage of PV array due to the influence of environmental temperature, which may increase the probability of damage to the controller rise. Therefore, it is very important to configure the system reasonably. For the recommended maximum power of PV array for this controller, please refer to the table below:

Model	Rated Charge	Rated Charge	Max. PV Array	Max. PV open
Wiodei	Current	Power	Power	circuit voltage
TDIDONIAGONI	404	130W/12V	195W/12V	
TRIRON1206N	10A	260W/24V	390W/24V	46V [©]
TRIRON2206N	20A	260W/12V	390W/12V	60√ [®]
TRIRON2206IN	20A	520W/24V	780W/24V	
TRIRON1210N	10A	130W/12V	195W/12V	
TRIRONIZION	IUA	260W/24V	390W/24V	
TRIRON2210N	204	260W/12V	390W/12V	
TRIRONZZTUN	20A	520W/24V	780W/24V	92V [©]
TRIRON3210N	30A	390W/12V	585W/12V	100V [®]
TRIRON3210IN	30A	780W/24V	1170W/24V	
TRIRON4210N	40A	520W/12V	780W/12V	
TRIRON4210IN	40A	1040W/24V	1560W/24V	
TDIDONIONEN	204	390W/12V	585W/12V	
TRIRON3215N	30A	780W/24V	1170W/24V	138√ ^{Ф}
TRIRON4215N	40A	520W/12V	780W/12V	150V [®]
TRINON42 ISIN	40A	1040W/24V	1560W/24V	

- 1) At 25°C environment temperature
- 2 At minimum operating environment temperature

The controller may be damaged when the maximum PV open circuit voltage(Voc) exceeds 60V(TRIRON**06N), 100V(TRIRON**10N) or 150V (TRIRON**15N) at minimum operating environment temperature.

2.3 Wire Size

The wiring and installation methods must conform to all national and local electrical code requirements.

PV Wire Size

Since PV array output can vary due to the PV module size, connection method or sunlight angle, the minimum wire size can be calculated by the Isc * of PV array. Please refer to the value of Isc in the PV module specification. When PV modules connect in series, the Isc is equal to a PV modules Isc. When PV modules connect in parallel, the Isc is equal to the sum of the PV module's Isc. The Isc of the PV array must not exceed the controller's maximum PV input current. Please refer to the table as below:

NOTE: All PV modules in a given array are assumed to be identical.

*Isc=short circuit current(amps) Voc=open circuit voltage.

incomposition out					
Model	Max. PV input current	Max. PV wire size*			
TRIRON1206N TRIRON1210N	10A	4mm²/12AWG			
TRIRON2206N TRIRON2210N	20A	6mm²/10AWG			
TRIRON3210N TRIRON3215N	30A	10mm²/8AWG			
TRIRON4210N TRIRON4215N	40A	16mm²/6AWG			

*These are the maximum wire sizes that will fit the controller terminals.

When the PV modules connect in series, the open circuit voltage of the PV array must not exceed 46V (TRIRON**06N), 92V (TRIRON**10N) or 92V (TRIRON**15N) at 25°C environment temperature.

Battery and Load Wire Size

The battery and load wire size must conform to the rated current, the reference size as below:

Model	Rated charge current	Rated discharge current	Battery wire size	Load wire size
TRIRON1206N TRIRON1210N	10A	10A	4mm²/12AWG	4mm²/12AWG

TRIRON2206N TRIRON2210N	20A	20A	6mm²/10AWG	6mm²/10AWG
TRIRON3210N TRIRON3215N	30A	30A	10mm²/8AWG	10mm²/8AWG
TRIRON4210N TRIRON4215N	40A	40A	16mm²/6AWG	16mm²/6AWG

The wire size is only for reference. If there is a long distance between the PV array and the controller or between the controller and the battery, larger wires can be used to reduce the voltage drop and improve performance.

2.4 Mounting

- Risk of explosion! Never install the controller in a sealed enclose with flooded batteries! Do not install in a confined area where battery gas can accumulate.
- Risk of electric shock! When wiring the solar modules, the PV array can produce open circuit voltages in excess of 100V when in sunlight.

The controller requires at least 150mm of clearance above and below for proper air flow. Ventilation is highly recommended if mounted in an enclosure.

Installation Procedure:

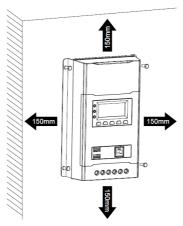


Figure 2-1 Mounting

Step 1: Determination of Installation Location and Heat-dissipation Space

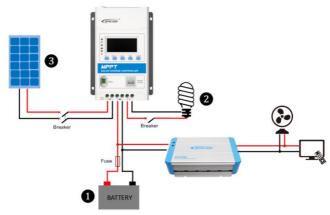


Figure 2-2 Schematic of wiring diagram

Determination of installation location: The controller shall be installed in a place with sufficient air flow through the radiators of the controller and a minimum clearance of 150 mm from the upper and lower edges of the controller to ensure natural thermal convection. Please see Figure 2-1:

Mounting.

If the controller is to be installed in an enclosed box, it is important to ensure reliable heat dissipation through the box.

Step 2: Connect the system in the order of ① battery → ② load ♥ → ③ PV array Ⅲ in accordance with Figure 2-2, "Schematic Wiring Diagram" and disconnect the system in the reverse order ③ ② ①.

- While wiring the controller do not close the circuit breaker or fuse and make sure that the leads of "+" and "-" poles are connected correctly.
- A fuse which current is 1.25 to 2 times the rated current of the controller must be installed on the battery side with a distance from the battery not greater than 150 mm.
- If an inverter is to be connected to the system, connect the inverter directly to the battery, not to the load side of the controller.

Step 3: Grounding

As the TRIRON series is a common negative controller, the negative poles of the PV array, battery and load can be grounded together.

CAUTION

The controller can also be used in a common positive system. In this case, the negative poles of the controller, PV and load can't be grounded together, but only one of them can be grounded.

Step 4: Connect accessories

Connect the remote temperature sensor cable (model: RTS300R47K3.81A)

Connect one end of the remote temperature sensor cable to the interface (3) and place the other end close to the battery.

If the remote temperature sensor is not connected to the controller,, the default setting for battery charging or discharging temperature is 25 °C without temperature compensation.

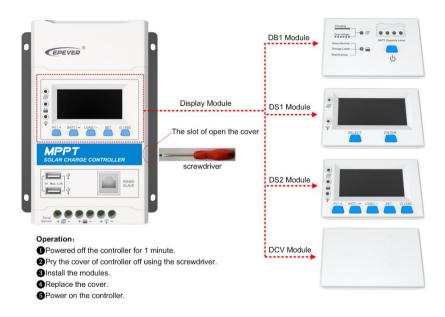
Connect the accessories for RS485 communication

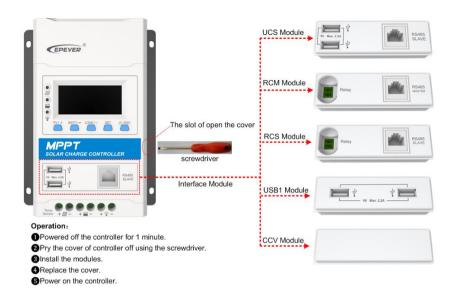
Refer to 3.2 "Setting and Operation of Controller".

CAUTION

The RS-485 port is not SELV circuit, it must have isolation between the port and the place where the end user can access directly.

Step 5: Powered on the controller

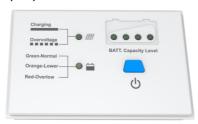

Closing the battery fuse will switch on the controller. Then check the status of the battery indicator (the controller is operating normally when the indicator is lit in green). Close the fuse and circuit breaker of the load and PV array. Then the system will be operating in the preprogrammed mode.



CAUTION

If the controller is not operating properly or the battery indicator on the controller shows an abnormality, please refer to 4.2 "Troubleshooting".

3 Modules installation



4 Module Introduction

4.1 Display Module

4.1.1 Display Basic1 (DB1)

(1) Charging and battery LED indicator

Indicator	Color	Status	Information
	Green	On Solid	PV charges the battery with
	Green	Oil Solid	a low current
			1. No sunlight
- #	Green	OFF	2. Connection error
			3. Low PV voltage
	Green	Slowly Flashing(1Hz)	Normal charging
	Green	Fast Flashing(4Hz)	PV Over voltage
	Green	On Solid	Normal
	Green	Slowly Flashing(1Hz)	Full
	Green	Fast Flashing(4Hz)	Over voltage
	Orange	On Solid	Under voltage
_	Red	On Solid	Over discharged
		0	Battery Overheating
	Red	Slowly Flashing(1Hz)	Low temperature®
All LED in die		System voltage error [®]	
All LED indic	Controller Overheating		

- ① When a lead-acid battery is used, the controller hasn't the low temperature protection.
- ② When a lithium-ion battery is used, the system voltage can't be identified automatically.

(2) Battery Capacity Level Indicator

• Battery Capacity Level (BCL)

Indicator	Color	Status	Information	
☆ 000	Green	25% Indicator slowly flashing	0%to <25%	
●☆ ○○	Green	50% Indicator slowly flashing	25%to <50%	
• 2 00	•¥ 00 Gieen	25% Indicator on solid	25 /610 < 50 /6	
		75% Indicator slowly flashing	50%to <75%	
••☆○	Green	25%,50% Indicators on solid	50%10 <75%	
		100% Indicator slowly flashing	759/ to 1009/	
●●●☆	Green	25%,50%,75% Indicators on solid	75% to 100%	
••••	Green	25%,50%,75%,100%Indicators on solid	100%	

[&]quot;o" Indicator is OFF; "•"Indicator is on Solid; "☆" Indicator is slowly flashing.

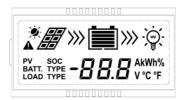
Load status

5 0 1	Green	on solid	The load is ON
Battery Capacity Level	Green	OFF	The load is OFF

(3) Button

In the manual mode of the load, it can control On/Off of the load via the button

4.1.2 Display Standard1 (DS1)


(1) Charging and load LED indicator

Indicator	Color	Status	Instruction	
	Green	On Solid	PV charges the battery with a low	
	0.00	0.1.00.1.4	current	
			1. No sunlight	
	Green	OFF	2. Connection error	
			3. Low PV voltage	
	Green	Slowly Flashing(1Hz)	Normal charging	
	Green Fast Flashing(4Hz)	Fast Flashing(4Hz)	PV Over voltage	
•	Red	On Solid	Load ON	
₩	Red	OFF	Load OFF	

(2) Button

Mode	Note
Load ON/OFF	In load manual mode, it can turn the load On/Off of the load via the button.
Clear Fault	Press the button
Browsing Mode	Press the button
Setting Mode	Press the button and hold on 5s to enter the setting mode Press the button to set the parameters, Press the button to confirm the setting parameters or exit the setting mode automatically after 10s.

(3) Interface

1) Icon

Item	Icon	Status
	*	Day
	1	Night
PV array		No charging
	#	Charging
	PV	PV Voltage, Current, Power
		Battery capacity, In Charging
Battery	BATT.	Battery Voltage, Current, Temperature
	BATT. TYPE	Battery Type
	\O	Load ON
Load	~	Load OFF

LOAD

Load Voltage, Current, Load mode

2) Browse interface

Press the button to cycle display the following interfaces.

- 3) Load parameters
- Combination of the DS1 and RCM modules (To connect the system with the inverter, refer

Display: Voltage/Current/Consumed power

Combination of the DS2 and UCS modules with the LCD display (connect a LED load:

Display: Current/Consumed power/Load working mode-Timer1/ Load working mode-Timer2

4) Setting

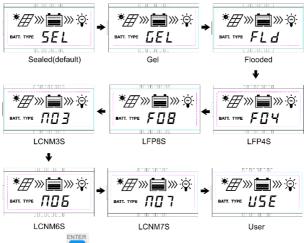
1 Clear the generated energy

Operating:

Step 1: Press the button and hold 5s under the PV power interface and the value is flashing.

Step 2: Press the button to clear the generated energy...

2 Switch the battery temperature unit


Press the button and hold 5s under the battery temperature interface.

3 Battery type

Step1: Press the button to browse the battery voltage interface.

Step2: Press and hold the button until the battery-type interface flashes.

Step3: Press the button to change the battery type, shown as below:

Step4: Press and hold the button to confirm.

4 Local load mode

Operating:

Step1: Press the button and hold 5s under the load mode interface.

Step2: Press the button when the load mode interface is flashing.

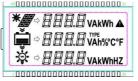
Step3: Press the button to the load mode.

NOTE: Please refer to 5.2 for the load working modes.

4.1.3 Display Standard 2 (DS2)

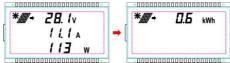
(1) Indicator

Indicator	dicator Color Status		Instruction	
	Green	On Solid	PV charges the battery with a low current	
	Green	OFF	No sunlight Connection error Low PV voltage	
	Green	Slowly Flashing(1Hz)	Normal charging	
	Green	Fast Flashing(4Hz)	PV Over voltage	
	Green	On Solid	Normal	
	Green	Slowly Flashing(1Hz)	Full	
	Green	Fast Flashing(4Hz)	Over voltage	
	Orange	On Solid	Under voltage	
	Red	On Solid	Over discharged	
	Red	Slowly Flashing(1Hz)	Battery Overheating Low temperature [©]	
	Yellow	On Solid	Load ON	
~	Yellow	OFF	Load OFF	
PV&BATTLED fast flashing		fast flashing	Controller Overheating System voltage error®	

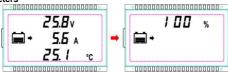

① When a lead-acid battery is used, the controller hasn't the low temperature protection.

② When a lithium-ion battery is used, the system voltage can't be identified automatically.

(2) Button


PV/+		PV browsing interface		
	Press the button	Setting data +		
	Press the button and hold 5s	Setting the LCD cycle time		
		BATT browsing interface		
BATT/→	Press the button	Cursor displacement during setting		
	Press the button and hold 5s	Setting the battery type, battery capacity level and temperature unit.		
LOAD/-	Press the button	1.Inverter load browsing interface with RCM module 2.Controller load browsing interface with RCS module. Setting data -		
	Press the button and hold 5s	Setting the load working mode with RCS module.		
SET		Setting interface		
	Press the button	Setting interface switch to the browsing interface		
		Setting parameter to enter button		
& /ESC	Daniel the better	Turn ON/OFF the inverter with RCS module		
	Press the button	Exit the setting interface		

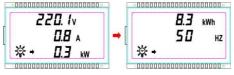
(3)Display


Icon	Information	lcon	Information	Icon	Information
*=	Day	*#	Not charging	(C)	Not discharging
J	Night	****	Charging		Discharging

1) PV parameters

Display: Voltage/Current/Power/Generated Energy

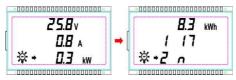
2) Battery parameters



Display: Voltage/Current/Temperature/Battery capacity level

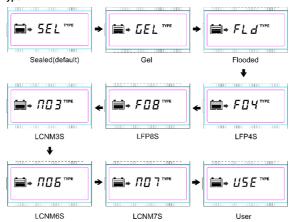
3) Load parameters

Combination of the DS2 and RCM modules (To connect the system with the inverter, refer to


4.2.4)

Display: Voltage/Current/Power/ Consumed energy/Frequency

• Combination of the DS2 and UCS modules with the LCD display (connect a LED load: refer to


4.2.5)

Display: Voltage/Current/Power/ Consumed energy/Load working mode-Timer1/ Load working mode-Timer2

(4) Setting parameters

1) Battery type

Operation:

Step 1: Press the button for the setting interface.

Step 2: Press the button and hold 5s for the battery type interface.

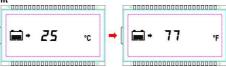
Step 3: Press the ____ or ___button to set the battery type.

Step 4: Press the button to confirm the parameters.

2) Battery capacity

Operation:

Step 1: Press the button for the setting interface.


Step 2: Press the button and hold 5s for the battery type interface.

Step 3: Press the button for the battery capacity interface.

Step 4: Press the or button to set the battery capacity.

Step 5: Press the button to confirm the parameters.

3) Temperature unit

Operation:

Step 1: Press the ____ button for the setting interface.

Step 2: Press the ____ button and hold 5s for the battery type interface.

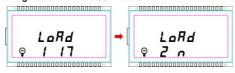
Step 3: Press the ____ button twice for the temperature units interface.

Step 4: Press the or button to set the temperature units.

Step 5: Press the button to confirm the parameters.

4) LCD cycle time

NOTE: The LCD cycle default time is 2s,the setting time range is $0\sim$ 20s. Operation:


Step 1: Press the button for the setting interface.

Step 2: Press the button and hold 5s for the LCD cycle time interface.

Step 3: Press the or button to set the LCD cycle time.

Step 4: Press the ____ button to confirm the parameters.

5) Local load working mode with the RCS module

Operation:

Step 1: Press the button for the setting interface.

Step 2: Press the button and hold 5s for the load working mode interface.

Step 3: Press the or button to set the working mode...

Step 4: Press the button to confirm the parameters.

NOTE: Please refer to chapter 5.2 for the load working mode.

4.2 Interface Modules

4.2.1 Interface type

Interface	Interface type	Output voltage/current	Short circuit protection
USB output interface	Standard USB	5VDC/2.2A(Total)	Yes
RS485 com. interface	RJ45	5VDC/200mA	Yes
Relay interface	3.81-2P	30VDC/1A	NO

4.2.2 Double USB (USB1)

USB output interface:

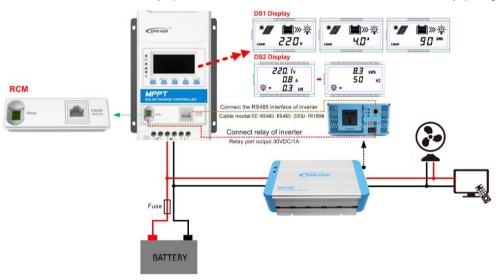
Charging for phone, pad and so on. Max. charging current is 2.2A(total).

NOTE; USB interface output voltage/current available when the load is ON.

4.2.3 USB COM Slave (UCS)

USB output interface: Charging for phone, pad and so on. Max. charging current is 2.2A(total).

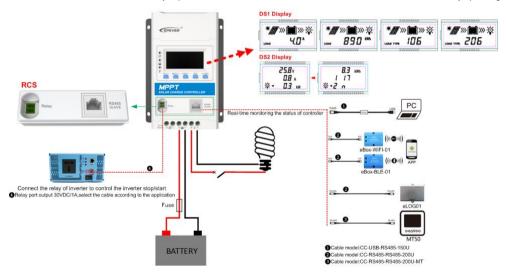
NOTE; USB interface output voltage/current available when the load is ON.


RS485 interface: View working status and view/modify working parameters via APP or PC software.

4.2.4 Relay COM Master (RCM connect the our company of inverter only)

Note: RCM can only be connected with the EPEVER inverters, not with optional accessories.

RS485 interface: When the master is set in RS485 communication mode, i.e., with a combination of the RCM and DS1/DS2 modules, the information of the inverter (to be supplied by our company) can be displayed by the DS1/DS2 module. See the following figure:


Relay interface: It shall connect the controller's relay in parallel with the inverter start switch, so it can turn ON/OFF the inverter by operating the button.

4.2.5 Relay COM Slave (RCS connect the accessories)

RS485 interface: When the slave is set in RS485 communication mode, i.e., with a combination of the RCS and DS1/DS2 modules, the information of the controller can be displayed by the DS1/DS2 module.

Relay interface: It shall connect the controller's relay in parallel with the inverter start switch, so it can turn ON/OFF the inverter by operating the button.

5 Parameters Setting

5.1 Battery parameters

5.1.1 Supported battery types

		Sealed(default)
1	Battery	Gel
		Flooded
	Lithium	LiFePO4(4S/ 8S)
2	battery	Li(NiCoMn)O2 (3S/6S/7S)
3	User	

5.1.2 Local setting

When the default battery type is selected, the battery voltage parameters cannot be modified. To change these parameters, select the "USE" type.

Step1: Enter the "USE" battery type. For DS1 module, detail operations of entering the "USE" battery type refer to the chapter 3.1.2. For DS2 module, detail operations of entering the "USE" battery type refer to the chapter 3.1.3.

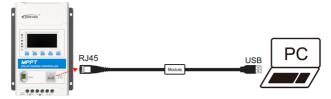
Step2: Under the "USE" battery type, the battery parameters that can be local set are shown in the table below:

Parameters	Default	Range	Settings on DS1 module	Settings on DS2 module
SYS★	12VDC	12/24VDC	Under the "USE" battery type, press the button to enter the "SYS" interface.	Under the "USE" battery type, press the button to enter

			2) Press the button again to display the current "SYS" value. 3) Press the button to modify the parameter. 4) Press the button to confirm and enter the next parameter.	the "SYS" interface. 2) Press the button again to display the current "SYS" value. 3) Press the or button to modify the parameter. 4) Press the confirm and enter the next parameter.
BCV	14.4V	9—17		SET button and to
FCV	13.8V	9—17		5) Press the button again to display the current voltage value.
LVR	12.6V	9—17	5) Press the button again to display the current	PV/+ LOAD/-
LVD	11.1V	9—17	5) Press the button again to display the current voltage value. 6) Press the button to modify the parameter(short press to increase 0.1V, long press to decrease 0.1V). 7) Press the button to confirm and enter the next parameter.	6) Press the or button to modify the parameter(press button to increase 0.1V, press button to decrease 0.1V). 7) Press the confirm and enter the next parameter.
LEN	NO	YES/NO	Press the button to modify the switch status. Note: It exists automatically from the current interface after no operation of more than 10S.	Press the or button to modify the switch status. Note: It exists automatically from the

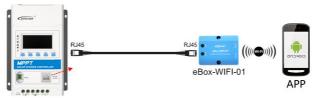
		current interface after no operation
		of more than 10S.

*The SYS value can only be modified under the non-lithium "USE" type. That is, the battery type is Sealed, Gel, or Flooded before entering the "USE" type, the SYS value can be modified; if it is lithium battery type before entering the "USE" type, the SYS value cannot be modified.


Only the above battery parameters can be set on the local controller, and the remaining battery parameters follow the following logic (the voltage level of 12V system is 1, the voltage level of 24V system is 2).

Battery type Battery parameters	Sealed/Gel/Flooded User	LiFePO4 User	Li(NiCoMn)O2 User
Over voltage disconnect voltage	BCV+1.4V*voltage level	BCV+0.3V*voltage level	BCV+0.3V*voltage level
Charging limit voltage	BCV+0.6V*voltage level	BCV+0.1V*voltage level	BCV+0.1V*voltage level
Over voltage reconnect voltage	BCV+0.6V*voltage level	BCV+0.1V*voltage level	Boost charging voltage
Equalize charging voltage	BCV+0.2V*voltage level	Boost charging voltage	Boost charging voltage
Boost reconnect charging voltage	FCV-0.6V*voltage level	FCV-0.6V*voltage level	FCV-0.1V*voltage level
Under voltage warning reconnect voltage(UVWR)	UVW+0.2V*voltage level	UVW+0.2V*voltage level	UVW+1.7V*voltage level
Under voltage warning voltage(UVW)	LVD+0.9V*voltage level	LVD+0.9V*voltage level	LVD+1.2V*voltage level
Discharging limit voltage	LVD-0.5V*voltage level	LVD-0.1V*voltage level	LVD-0.1V*voltage level

5.1.3 Remote Setting


1) Setting the battery parameters by PC software

Connect the controller's RJ45 interface to the PC's USB interface via a USB to RS485 cable (model: CC-USB-RS485-150U). When selecting the battery type as "USE," set the voltage parameters by the PC software. Refer to the cloud platform manual for detail.

2) Setting the battery parameters by APP

Connect the controller to the WIFI module through a standard network cable or connect to the Bluetooth module by Bluetooth signal. When selecting the battery type as "USE," set the voltage parameters by the APP. Refer to the cloud APP manual for details.

3) Controller parameters

♦ Battery voltage parameters

Measure the parameters in the condition of 12V/25°C. Please double the values in the 24V system.

Battery type Battery parameters	Sealed	GEL	FLD	User
Over voltage disconnect voltage	16.0V	16.0V	16.0V	9~17V
Charging limit voltage	15.0V	15.0V	15.0V	9~17V
Over voltage reconnect voltage	15.0V	15.0V	15.0V	9~17V
Equalize charging voltage	14.6V		14.8V	9~17V
Boost charging voltage	14.4V	14.2V	14.6V	9~17V
Float charging voltage	13.8V	13.8V	13.8V	9~17V
Boost reconnect charging	13.2V	13.2V	13.2V	9~17V

voltage				
Low voltage reconnect voltage	12.6V	12.6V	12.6V	9~17V
Under voltage warning reconnect voltage	12.2V	12.2V	12.2V	9~17V
Under voltage warning voltage	12.0V	12.0V	12.0V	9~17V
Low voltage disconnect voltage	11.1V	11.1V	11.1V	9~17V
Discharging limit voltage	10.6V	10.6V	10.6V	9~17V
Equalize Duration	120 minutes		120 minutes	0∼180 minutes
Boost Duration	120 minutes	120 minutes	120 minutes	10∼180 minutes

When the battery type is "USE," the battery voltage parameters follow the following logic:

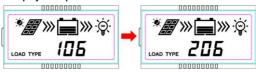
- A. Over Voltage Disconnect Voltage > Charging Limit Voltage ≥ Equalize Charging Voltage ≥
 Boost Charging Voltage ≥ Float Charging Voltage > Boost Reconnect Charging Voltage.
- B. Over Voltage Disconnect Voltage > Over Voltage Reconnect Voltage
- C. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage.
- D. Under Voltage Warning Reconnect Voltage>Under Voltage Warning Voltage≥ Discharging Limit Voltage;
- E. Boost Reconnect Charging voltage >Low Voltage Reconnect Voltage.
- ♦ Lithium Battery voltage parameters

Battery type	LF	P		LNCM		Heer
Battery parameters	LFP4S	LFP8S	LCNM3S	LCNM6S	LCNM7S	User ®
Over voltage disconnect voltage	14.8V	29.6 V	12.8 V	25.6 V	29.8 V	9~17 V
Charging limit voltage	14.6 V	29.2 V	12.6 V	25.2 V	29.4 V	9~17 V
Over voltage reconnect voltage	14.6 V	29.2 V	12.5 V	25.0 V	29.1 V	9~17 V
Equalize charging voltage	14.5 V	29 .0 V	12.5 V	25.0 V	29.1 V	9~17 V
Boost charging voltage	14.5 V	29.0 V	12.5 V	25.0 V	29.1 V	9~17 V
Float charging voltage	13.8 V	27.6 V	12.2 V	24.4 V	28.4 V	9~17

						V
Boost reconnect charging voltage	13.2 V	26.4 V	12.1 V	24.2 V	28.2 V	9~17 V
Low voltage reconnect voltage	12.8 V	25.6 V	10.5 V	21.0 V	24.5 V	9~17 V
Under voltage warning reconnect voltage	12.2 V	24.4 V	12.2 V	24.4 V	28.4 V	9~17 V
Under voltage warning voltage	12.0 V	24.0 V	10.5 V	21.0 V	24.5 V	9~17 V
Low voltage disconnect voltage	11.1 V	22.2 V	9.3 V	18.6 V	21.7 V	9~17 V
Discharging limit voltage	11.0 V	22.0 V	9.3 V	18.6 V	21.7 V	9~17 V

- ① For LFP4S, the battery parameters under the "User" battery type is 9-17V; these parameters should x2 for LFP8S.
- When the battery type is "USE," the Lithium battery voltage parameters follow the following logic:
- A. Over Voltage Disconnect Voltage>Over Charging Protection Voltage(Protection Circuit Modules(BMS))+0.2V;
- B. Over Voltage Disconnect Voltage>Over Voltage Reconnect Voltage=Charging Limit Voltage ≥
 Equalize Charging Voltage = Boost Charging Voltage ≥ Float Charging Voltage>Boost

 Reconnect Charging Voltage;
- C. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥ Discharging Limit Voltage.
- D. Under Voltage Warning Reconnect Voltage>Under Voltage Warning Voltage≥ Discharging Limit Voltage;
- E. Boost Reconnect Charging voltage> Low Voltage Reconnect Voltage;
- F. Low Voltage Disconnect Voltage ≥ Over Discharging Protection Voltage (BMS)+0.2V

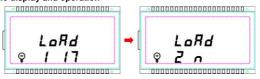


The required accuracy of BMS is no higher than 0.2V. We will not assume responsibility for the abnormal when the accuracy of BMS is higher than 0.2 v.

5.2 Load working modes

5.2.1 LCD setting

1) DS1 module display and operation


Operation:

Step1: Press the button and hold 5s for the load mode interface.

Step2: Press the button when the load mode interface is flashing.

Step3: Press the button to confirm the load working modes.

2) DS2 module display and operation

Operation:

Step1: Press the button for the setting interface.

Step2: Press the button and hold 5s for the load working mode interface.

Step3: Press the or button to set the load working modes.

Step4: Press the button to confirm the parameters.

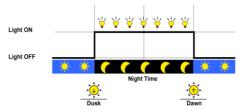
3) Load working mode

1**	Timer 1	2**	Timer 2
100	Light ON/OFF	2 n	Disabled
101	Load will be on for 1 hour since	201	Load will be on for 1 hour before
	sunset		sunrise
102	Load will be on for 2 hours since	202	Load will be on for 2 hours before
	sunset		sunrise
103	Load will be on for 3∼13 hours	203	Load will be on for $3{\sim}13$ hours
~ 113	since sunset	~ 213	before sunrise

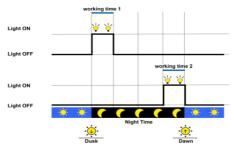
114	Load will be on for 14 hours since	214	Load will be on for 14 hours before
	sunset		sunrise
115	Load will be on for 15 hours since	215	Load will be on for 15 hours before
	sunset		sunrise
116	Test mode	2 n	Disabled
117	Manual mode(Default load ON)	2 n	Disabled

<u> </u>			
WARNING			

Please set Light ON/OFF, Test mode and Manual mode via Timer1. Timer2 will be disabled and display "2 n ".


5.2.2 RS485 communication setting

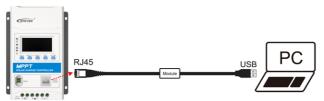
1) Load working mode


• Manual Control (default)

Control ON/OFF of the load via the button or remote commands (e.g., APP or PC software).

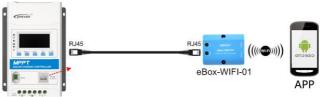
· Light ON/OFF

Light ON+ Timer

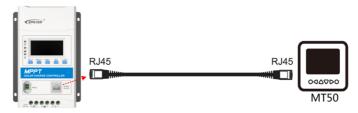

Time Control

Control the load ON/OFF time through setting the real-time clock.

2) Load working mode settings


(1) PC setting

Connect the controller's RJ45 interface to the PC's USB interface via a USB to RS485 cable (model: CC-USB-RS485-150U). Set the load mode by the PC software. Refer to the cloud platform manual for detail.



(2)APP software setting

Connect the controller to the WIFI module through a standard network cable or connect to the Bluetooth module by Bluetooth signal. Set the load mode by the APP. Refer to the cloud APP manual for details.

(3)MT50 Setting

For detailed setting methods, please refer to the instructions or contact after-sales support.

6 Others

6.1 Protection

PV Over Current	When the charging current or power of the PV array exceeds its rated current or power, it will be charged at the rated current or power. WARNING: When the PV's charging current is greater than the rated current, the PV's open circuit voltage cannot greater than the "maximum PV open-circuit voltage", otherwise the controller may be damaged.
PV Short Circuit	When not in PV charging state, the controller will not be damaged in case of a short-circuiting in the PV array. WARNING: It is forbidden to short-circuit the PV array during charging. Otherwise, the controller may be damaged.
PV Reverse Polarity	When the polarity of the PV array is reversed, the controller may not be damaged and can continue to operate normally after the polarity is corrected. WARNING: When the PV array is connected reversely to the controller, and the PV array's actual operating power is greater than 1.5 times the rated charging power of the controller, the controller will be damaged.
Night Reverse Charging	Prevents the battery from discharging through the PV module at night.
Battery Reverse Polarity	Fully protected against battery reverse polarity; no damage to the controller will result. Correct the miswire to resume normal operation. WARNING: Limited to the characteristic of lithium battery, when the PV connection is correct and battery connection reversed, the controller will be damaged.
Battery Over Voltage	When the battery voltage reaches the over voltage disconnect voltage, it will automatically stop battery charging to prevent battery damage caused by over-charging.
Battery Over Discharge	When the battery voltage reaches the low voltage disconnect voltage, it will automatically stop battery discharging to prevent battery damage caused by over-discharging. (Any controller connected loads will be disconnected. Loads directly connected to the battery will not be affected and may continue to discharge the battery.)
Battery Overheating	The controller can detect the battery temperature through an external temperature sensor. The controller stops working when its

	temperature exceeds 65 °C and begins working when its temperature is below 55 °C.
Lithium Battery Low Temperature	When the temperature detected by the optional temperature sensor is lower than the Low Temperature Protection Threshold(LTPT), the controller will stop charging and discharging automatically. When the detected temperature is higher than the LTPT, the controller will be working automatically (The LTPT is 0 °C by default and can be set within the range of 10 ~ -40 °C).
Load Short Circuit	When the load is short circuited (The short circuit current is ≥ 4 times the rated controller load current), the controller will automatically cut off the output. If the load reconnects the output automatically five times (delay of 5s, 10s, 15s, 20s, 25s), it needs to be cleared by pressing the Load button, restarting the controller or switching from Night to the Day (nighttime > 3 hours).
Load Overload	When the load is overloading (The overload current is ≥ 1.05 times the rated load current), the controller will automatically cut off the output. If the load reconnects automatically five times (delay of 5s, 10s, 15s, 20s, 25s), it needs to be cleared by pressing the Load button restarting the controller, switching from Night to Day (nighttime > 3 hours).
Controller Overheating*	The controller is able to detect the temperature inside the battery through an optional remote sensor. The controller stops working when its temperature exceeds 85 °C and begins to working when its temperature is below 75 °C.
TVS High Voltage Transients	The internal circuitry of the controller is designed with Transient Voltage Suppressors (TVS) which can only protect against high-voltage surge pulses with less energy. If the controller is to be used in an area with frequent lightning strikes, it is recommended to install an external surge arrester.

[★]When the internal temperature is 81°C, the reducing power charging mode which reduce the charging power of 5%,10%,20%,40% every increase 1 °Cis turned on. If the internal temperature is greater than 85°C, the controller will stop charging. But while the temperature decline to be below 75 °C, the controller will resume.

6.2 Troubleshooting

Controller Faults

Faults	Possible reasons	Troubleshooting
Charging LED indicator off during daytime when sunshine	PV array disconnection	Confirm that PV and battery wire connections are
falls on PV modules properly	r v array disconnection	correct and tight
Wire connection is correct, the controller is not working.	Battery voltage is lower than 9V	Please check the voltage of battery. At least 9V voltage
while conhection is correct, the controller is not working.	Battery voltage is lower than 5v	to activate the controller.

DB1: Charging indicator			
Green fast flashing			
DS1: Battery level shows full, battery frame and fault icon blink.	Battery over voltage	Check if battery voltage is higher than OVD(over voltage disconnect voltage), and disconnect the PV.	
DS2: Charging indicator		voltage disconnect voltage), and disconnect the PV.	
Green fast flashing Battery level shows full, battery frame and fault icon blink.			
DB1: Battery indicator			
Red on solid			
DS1: Battery level shows empty, battery frame and fault icon blink.	Battery over discharged	When the battery voltage is restored to or above LVR(I	
DS2: Battery indicator		voltage reconnect voltage), the load will recover	
Red on solid Battery level shows empty, battery frame and fault icon blink.			
DB1: Battery indicator			
Red slowly flashing			
DS1:			
battery frame and fault icon blink.	Battery Overheating	The controller will automatically turn the system off. But while the temperature decline to be below 55 °C, the	
DS2: Battery indicator		controller will resume.	
Red slowly flashing			
battery frame and fault icon blink.			

DB1 PV/BATT(orange)/Battery capacity lever(four) indicator	Controller Overheating	When heat sink of controller exceeds 85 $^{\circ}$ C, the controller will automatically cut input and output circuit. When the temperature below 75 $^{\circ}$ C, the controller will resume to work.
fast flashing DS2: PV/BATT(orange)indicator fast flashing	System voltage error	①Check whether the battery voltage match with the controller working voltage. ② Please change to a suitable battery or reset the working voltage.
The load is no output DS1/DS2:	Load Overload Fault code E002(only DS2)	Please reduce the number of electric equipments. Restart the controller. wait for one night-day cycle (night time>3 hours).
Load and fault icon blink	Load Short Circuit Fault code E001(only DS2)	① Check carefully loads connection, clear the fault. ②Restart the controller. ③wait for one night-day cycle (night time>3 hours).

Inverter fault

Inverter fault	Fault code	LCD	Indicator
Output short circuit	E001		
Output overload	E002		
Output voltage abnormal	E003		
Input over voltage	E005	Fault	Load
Input low voltage	E006	icon blink	indicator
Input over current	E007	(1S)	blink
Overheating	E008		
Communication timeout	E099★		

- The controller connects our company's inverter only, when it connects the purchased inverter, the LCD shows E099.
- With combination of the RCM and DS1/DS2 modules, the information of the inverter (to be supplied by our company) can be displayed by the DS1/DS2 module.

6.3 Maintenance

The following inspections and maintenance tasks are recommended at least two times per year for best performance.

- · Make sure controller firmly installed in a clean and dry ambient.
- Make sure no block on air-flow around the controller. Clear up any dirt and fragments on radiator.
- Check all the naked wires to make sure insulation is not damaged for serious solarization, frictional wear, dryness, insects or rats etc. Repair or replace some wires if necessary.
- Tighten all the terminals. Inspect for loose, broken, or burnt wire connections.
- Check and confirm that LED is consistent with required. Pay attention to any troubleshooting
 or error indication. Take corrective action if necessary.
- Confirm that all the system components are ground connected tightly and correctly.
- Confirm that all the terminals have no corrosion, insulation damaged, high temperature or burnt/discolored sign, tighten terminal screws to the suggested torque.
- · Check for dirt, nesting insects and corrosion. If so, clear up in time.
- Check and confirm that lightning arrester is in good condition. Replace a new one in time to avoid damaging of the controller and even other equipments.

WARNING

Risk of electric shock!

Make sure that all the power is turned off before above operations, and then follow the corresponding inspections and operations.

7 Technical Specifications

Electrical Parameters

Item	TRIRON 1206N	TRIRON 2206N	TRIRON 1210N	TRIRON 2210N	TRIRON 3210N	TRIRON 4210N	TRIRON 3215N	TRIRON 4215N
System nominal voltage	12/24VDC Auto®							
Rated charge current	10A	20A	10A	20A	30A	40A	30A	40A
Rated discharge current	10A	20A	10A	20A	30A	40A	30A	40A
Battery voltage range				8	3∼32V			
Max. PV open circuit voltage	60° 46°	-				150V [®] 138V [®]		
MPP voltage range	,	oltage +2V) 86V	(Battery voltage +2V)∼72V			(Battery voltage +2V)∼108V		
Rated charge power	130W/12V 260W/24V	260W/12V 520W/24V	130W/12V 260W/24V	260W/12V 520W/24V	390W/12V 780W/24V	520W/12V 1040W/24V	390W/12V 780W/24V	520W/12V 1040W/24V
Self-consumption		≤14mA(12V); ≤15mA(24V) ≤15mA(12V); ≤10mA(24V)					/); ≤10mA(24V)	
Discharge circuit voltage drop		≤0.18V						
Temperature compensate coefficient®	-3mV/°C/2V (Default)							
Grounding	Common negative							
RS485 interface	5VDC/200mA							
USB interface	5VDC/2.2A(Total)							
Relay interface	30VDC/1A							
Backlight time	Default:60S,Range:0~999S(0S:the backlight is ON all the time)							

①When a lithium battery is used, the system voltage can't be identified automatically.

2)At minimum operating environment temperature

3)At 25°C environment temperature

(4) When a lithium battery is used, the temperature compensate coefficient will be 0, and can't be changed.

Environmental Parameters

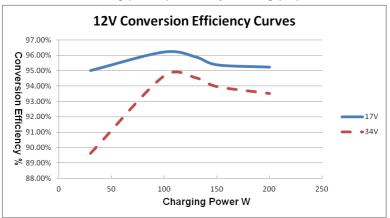
Environment temperature*	-25°C∼+55°C(LCD)	-25°C∼+50°C(LCD)	
	-30°C∼+55°C(No LCD)	-30°C∼+50°C (No LCD)	
Storage temperature range	-20°C∼+70°C		
Relative humidity	≤95%, N.C		
Enclosure	IP30		

^{*}The controller can full load working in the working environment temperature, When the internal temperature is 81°C, the reducing power charging mode is turned on. Refer to P37.

Mechanical Parameters

Item	TRIRON1206N TRIRON1210N	TRIRON2206N TRIRON2210N	TRIRON3210N	TRIRON3215N TRIRON4210N/TRIRON4215N		
Dimension	135×180.8×47.3mm	150×216×56.7mm	158×238.3×62.7mm	183×256.8×66.7mm		
Mounting dimension	126×150mm	141×170mm	158×200mm	174×220mm		
Mounting hole size	Ф5тт					
Terminal	12AWG(4mm²)	6AWG(16mm²)	6AWG(16mm²)	6AWG(16mm²)		
Recommended cable	12AWG(4mm²)	10AWG(6mm²)	8AWG(10mm²)	8AWG(10mm²)(TRIRON3215N) 6AWG(16mm²)		
Weight	0.56kg	0.92kg	1.35kg	1.85kg		

Module Parameters

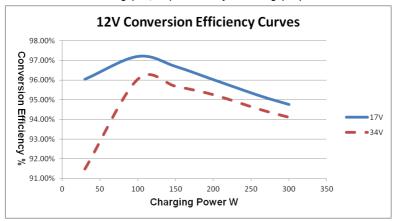

Item	DB1	DS1	DS2	ucs	RCM	RCS	USB1
Self-consumption	2mA	3mA	4mA	6.5mA	3.5mA	4mA	6.5mA
Dimension	88.5×56×23.1mm			88.5×28×19.2mm			
Weight	25g	55g	55g	30g	20g	20g	26g

Annex I Conversion Efficiency Curves

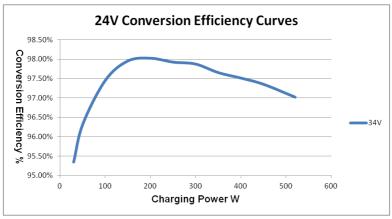
Illumination Intensity: 1000W/m2 Temp: 25°C

Model: TRIRON1206N

1. Solar Module MPP Voltage(17V, 34V) / Nominal System Voltage(12V)

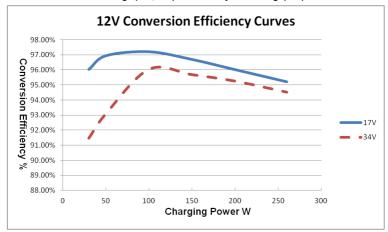


2. Solar Module MPP Voltage(34V) / Nominal System Voltage(24V)

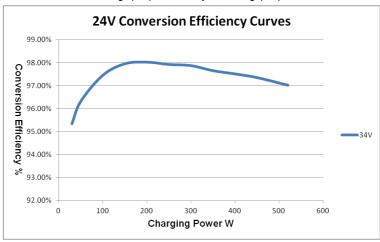


Model: TRIRON1210N

1. Solar Module MPP Voltage(17V, 34V) / Nominal System Voltage(12V)

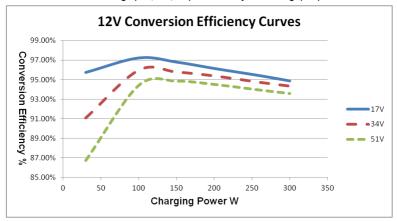


2. Solar Module MPP Voltage(34V) / Nominal System Voltage(24V)



Model: TRIRON2206N

1. Solar Module MPP Voltage (17V, 34V) / Nominal System Voltage(12V)

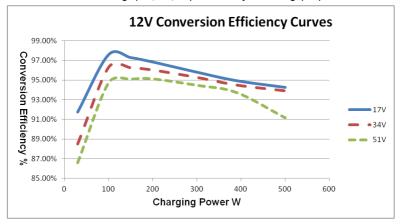


2. Solar Module MPP Voltage (34V) / Nominal System Voltage(24V)

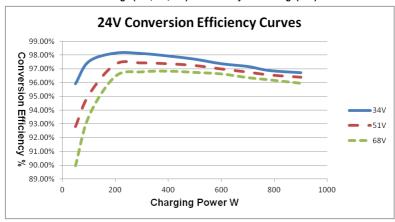


Model: TRIRON2210N

1. Solar Module MPP Voltage (17V, 34V,51V) / Nominal System Voltage(12V)

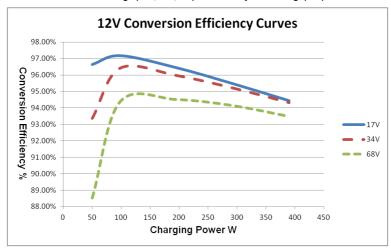


2. Solar Module MPP Voltage (34V,51V,68V) / Nominal System Voltage(24V)

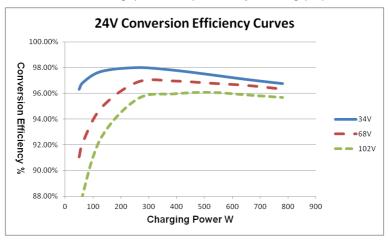


Model: TRIRON3210N

1. Solar Module MPP Voltage (17V, 34V,51V) / Nominal System Voltage(12V)

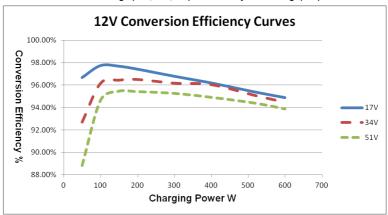


2. Solar Module MPP Voltage (34V,51V,68V) / Nominal System Voltage(24V)

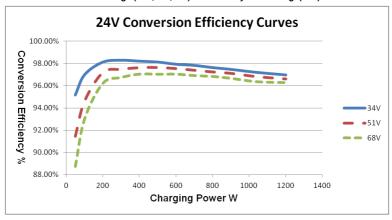


Model: TRIRON3215N

1. Solar Module MPP Voltage (17V, 34V,68V) / Nominal System Voltage(12V)

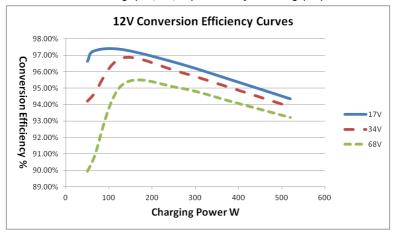


2. Solar Module MPP Voltage (34V,68V,102V) / Nominal System Voltage(24V)

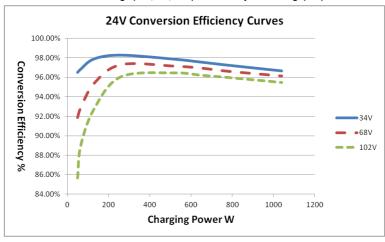


Model: TRIRON4210N

1. Solar Module MPP Voltage (17V, 34V,51V) / Nominal System Voltage(12V)



2. Solar Module MPP Voltage (34V,51V,68V) / Nominal System Voltage(24V)



Model: TRIRON4215N

1. Solar Module MPP Voltage (17V, 34V,68V) / Nominal System Voltage(12V)

2. Solar Module MPP Voltage (34V,68V,102V) / Nominal System Voltage(24V)

Any changes without prior notice!

Version number: 2.2

HUIZHOU EPEVER TECHNOLOGY CO., LTD.

Beijing Tel: +86-10-82894896/82894112

Huizhou Tel: +86-752-3889706 E-mail: info@epsolarpv.com Website: www.epsolarpv.com www.epever.com